2.1. Hardware compatible

Debian no impone requisitos de hardware más allá de los que establecen el núcleo Linux o kFreeBSD y el conjunto de herramientas GNU. En cualquier caso, cualquier arquitectura o plataforma a la que se haya adaptado el núcleo Linux o kFreeBSD, libc, gcc, etc., y para los que exista una adaptación de Debian, puede ejecutar Debian. Por favor, diríjase a las páginas de adaptaciones en http://www.debian.org/ports/arm/ para más información sobre sistemas de arquitectura 32-bit hard-float ARMv7 probados con Debian GNU/Linux.

En lugar de intentar describir las diferentes configuraciones de hardware compatibles con 32-bit hard-float ARMv7, esta sección contiene información general y referencias adicionales donde puede encontrar más información.

2.1.1. Arquitecturas compatibles

Debian GNU/Linux 8 permite el uso de once arquitecturas principales y algunas variaciones de cada arquitectura conocidas como sabores.

Arquitectura Designación de Debian Subarquitectura Sabor
Basada en Intel x86 i386    
AMD64 e Intel 64 amd64    
ARM armel Intel IXP4xx ixp4xx
Marvell Kirkwood kirkwood
Marvell Orion orion5x
Versatile versatile
ARM con hardware FPU armhf multiplatform armmp
multiplatform for LPAE-capable systems armmp-lpae
64bit ARM arm64    
MIPS (big endian) mips SGI IP22 (Indy/Indigo 2) r4k-ip22
SGI IP32 (O2) r5k-ip32
MIPS Malta (32 bit) 4kc-malta
MIPS Malta (64 bit) 5kc-malta
MIPS (little endian) mipsel MIPS Malta (32 bit) 4kc-malta
MIPS Malta (64 bit) 5kc-malta
IBM/Motorola PowerPC powerpc PowerMac pmac
PReP prep
Power Systems ppc64el IBM POWER8 or newer machines  
IBM S/390 64bit s390x IPL del lector VM y DASD genérico

Este documento cubre la instalación para la arquitectura 32-bit hard-float ARMv7 usando el núcleo Linux. Si busca información sobre cualquiera de las otras arquitecturas compatibles con Debian consulte las páginas de las adaptaciones de Debian.

2.1.2. Three different ARM ports

The ARM architecture has evolved over time and modern ARM processors provide features which are not available in older models. Debian therefore provides three ARM ports to give the best support for a very wide range of different machines:

  • Debian/armel targets older 32-bit ARM processors without support for a hardware floating point unit (FPU),

  • Debian/armhf works only on newer 32-bit ARM processors which implement at least the ARMv7 architecture with version 3 of the ARM vector floating point specification (VFPv3). It makes use of the extended features and performance enhancements available on these models.

  • Debian/arm64 works on 64-bit ARM processors which implement at least the ARMv8 architecture.

Muchas CPUs ARM también pueden funcionar en cualquier modo endian «little-endian» o «big-endian»). Sin embargo, la mayoría de las implementaciones de sistemas actuales usan el modo «little-endian». Debian sólo permite actualmente sistemas ARM «little-endian».

2.1.3. Variations in ARM CPU designs and support complexity

ARM systems are much more heterogeneous than those based on the i386/amd64-based PC architecture, so the support situation can be much more complicated.

The ARM architecture is used mainly in so-called system-on-chip (SoC) designs. These SoCs are designed by many different companies with vastly varying hardware components even for the very basic functionality required to bring the system up. System firmware interfaces have been increasingly standardised over time, but especially on older hardware firmware/boot interfaces vary a great deal, so on these systems the Linux kernel has to take care of many system-specific low-level issues which would be handled by the mainboard's BIOS in the PC world.

At the beginning of the ARM support in the Linux kernel, the hardware variety resulted in the requirement of having a separate kernel for each ARM system in contrast to the one-fits-all kernel for PC systems. As this approach does not scale to a large number of different systems, work was done to allow booting with a single ARM kernel that can run on different ARM systems. Support for newer ARM systems is now implemented in a way that allows the use of such a multiplatform kernel, but for several older systems a separate specific kernel is still required. Because of this, the standard Debian distribution only supports installation on a selected number of such older ARM systems, alongside the newer systems which are supported by the ARM multiplatform kernels (called armmp) in Debian/armhf.

2.1.4. Platforms supported by Debian/armhf

The following systems are known to work with Debian/armhf using the multiplatform (armmp) kernel:

Freescale MX53 Quick Start Board

The IMX53QSB is a development board based on the i.MX53 SoC.

versatile

The Versatile Express is a development board series from ARM consisting of a baseboard which can be equipped with various CPU daughter boards.

Certain Allwinner sunXi-based development boards and embedded systems

The armmp kernel supports several development boards and embedded systems based on the Allwinner A10 (architecture codename sun4i), A10s/A13 (architecture codename sun5i) and A20 (architecture codename sun7i) SoCs. Full installer support is currently available for the following sunXi-based systems:

  • Cubietech Cubieboard 1 + 2 / Cubietruck

  • LeMaker Banana Pi and Banana Pro

  • LinkSprite pcDuino and pcDuino3

  • Mele A1000

  • Miniand Hackberry

  • Olimex A10-Olinuxino-LIME / A10s-Olinuxino Micro / A13-Olinuxino / A13-Olinuxino Micro / A20-Olinuxino-LIME / A20-Olinuxino-LIME2 / A20-Olinuxino Micro

  • PineRiver Mini X-Plus

System support for Allwinner sunXi-based devices is limited to drivers and device-tree information available in the mainline Linux kernel. The android-derived linux-sunxi.org 3.4 kernel series is not supported by Debian.

The mainline Linux kernel generally supports serial console, ethernet, SATA, USB and MMC/SD-cards on Allwinner A10, A10s/A13 and A20 SoCs, but it does not have native drivers for the display (HDMI/VGA/LCD) and audio hardware in these SoCs. The NAND flash memory that is built into some sunXi-based systems is not supported.

Using a local display is technically possible without native display drivers via the simplefb infrastructure in the mainline kernel, which relies on the U-Boot bootloader for initialising the display hardware, but this is not supported by the U-Boot version in Debian 8.

SolidRun Cubox-i2eX / Cubox-i4Pro

The Cubox-i series is a set of small, cubical-shaped systems based on the Freescale i.MX6 SoC family. System support for the Cubox-i series is limited to drivers and device-tree information available in the mainline Linux kernel; the Freescale 3.0 kernel series for the Cubox-i is not supported by Debian. Available drivers in the mainline kernel include serial console, ethernet, USB, MMC/SD-card and display support over HDMI (console and X11). In addition to that, the eSATA port on the Cubox-i4Pro is supported.

Wandboard Quad

The Wandboard Quad is a development board based on the Freescale i.MX6 Quad SoC. System support for it is limited to drivers and device-tree information available in the mainline Linux kernel; the wandboard-specific 3.0 and 3.10 kernel series from wandboard.org are not supported by Debian. The mainline kernel includes driver support for serial console, display via HDMI (console and X11), ethernet, USB, MMC/SD and SATA. Support for the onboard audio options (analog, S/PDIF, HDMI-Audio) and for the onboard WLAN/Bluetooth module is not available in Debian 8.

Generally, the ARM multiplatform support in the Linux kernel allows running debian-installer on armhf systems not explicitly listed above, as long as the kernel used by debian-installer has support for the target system's components and a device-tree file for the target is available. In these cases, the installer can usually provide a working installation, but it may not be able to automatically make the system bootable. Doing that in many cases requires device-specific information.

When using debian-installer on such systems, you may have to manually make the system bootable at the end of the installation, e.g. by running the required commands in a shell started from within debian-installer.

2.1.5. Platforms no longer supported by Debian/armhf

EfikaMX

The EfikaMX platform (Genesi Efika Smartbook and Genesi EfikaMX nettop) was supported in Debian 7 with a platform-specific kernel, but is no longer supported from Debian 8 onwards. The code required to build the formerly used platform-specific kernel has been removed from the upstream Linux kernel source in 2012, so Debian cannot provide newer builds. Using the armmp multiplatform kernel on the EfikaMX platform would require device-tree support for it, which is currently not available.

2.1.6. Múltiples procesadores

Se permite el uso de múltiples procesadores (también llamado multi-procesamiento simétrico o SMP) con esta arquitectura. La imagen estándar del núcleo de Debian 8 ha sido compilada con compatibilidad con SMP-alternatives. Esto implica que el núcleo detectará el número de procesadores (o núcleos de procesador) y desactivará SMP de forma automática para sistemas de un solo procesador.

Originalmente, tener un sistema con varios procesadores era solo un problema para los sistemas de servidor más avanzados, aunque se ha extendido en los últimos años incluso en ordenadores y portátiles de rango bajo con la introducción de los denominados procesadores multi-core. Contienen dos o más unidades de procesamiento, denominados core, en un único procesador físico.

2.1.7. Compatibilidad de tarjeta gráfica

La compatibilidad de Debian con interfaces gráficas está determinada por la compatibilidad subyacente encontrada en el sistema X11 de X.Org. En sistemas PC modernos, habitualmente la interfaz gráfica funcionará desde el primer momento sin una configuración posterior. La disponibilidad de funciones avanzadas de tarjeta gráfica como la aceleración de hardware 3D o vídeo acelerado por hardware depende del hardware de gráficos utilizado en el sistema, y en algunos casos de la instalación de imágenes de firmware adicionales (consulte Sección 2.2, “Dispositivos que requieren Firmware”). Se han dado algunos casos de hardware donde la instalación de firmware adicional de tarjeta gráfica era necesario incluso para la compatibilidad básica de gráficos, pero son situaciones excepcionales.

Nearly all ARM machines have the graphics hardware built-in, rather than being on a plug-in card. Some machines do have expansion slots which will take graphics cards, but that is a rarity. Hardware designed to be headless with no graphics at all is quite common. Whilst basic framebuffer video provided by the kernel should work on all devices that have graphics, fast 3D graphics invariably needs binary drivers to work. The situation is changing quickly but at the time of the jessie release free drivers for nouveau (Nvidia Tegra K1 SoC) and freedreno (Qualcomm Snapdragon SoCs) are available in the release. Other hardware needs non-free drivers from 3rd parties.

Para más detalles sobre tarjetas de vídeo y dispositivos de señalamiento compatibles en http://xorg.freedesktop.org/. Debian 8 incluye X.Org versión 7.7.

2.1.8. Hardware de conectividad de red

Casi cualquier tarjeta de interfaz de red (también llamadas «network interface card» o NIC, n. del t.) compatible con el núcleo de Linux es también compatible con el sistema de instalación. Por regla general, los controladores modulares se cargarán automáticamente.

Para 32-bit hard-float ARMv7, la mayoría de dispositivos incorporados Ethernet son compatibles, y se proporcionan módulos para dispositivos adicionales PCI e USB.

2.1.9. Periféricos y otro hardware

Linux es compatible con una amplia variedad de dispositivos de hardware como pueden ser: ratones, impresoras, escáneres y dispositivos PCMCIA y USB. Sin embargo, muchos de éstos no son necesarios durante la instalación del sistema.